Abstract

IntroductionHeart failure (HF) is among the leading causes of morbidity and mortality worldwide. Several conditions trigger left ventricular chronic pressure or volume overload, hypertrophy, systolic and diastolic dysfunction, leading to cardiac remodeling and a rapid progression toward HF. Therapeutic interventions elicit reverse remodeling (RR), a highly variable myocardial response that ranges from none to total ventricular structural/functional recovery. However, HF patients present several comorbidities and medications that mask a comprehensive molecular knowledge of RR and hinder the identification of potential biomarkers of its progression or prognosis. Therefore, instead of using this heterogeneous population or even animal models to understand myocardial remodeling, we propose studying pregnancy-induced cardiovascular remodeling and postpartum-induced RR. ObjectivesTo assess cardiovascular functional and structural adaptations during pregnancy and in postpartum, characterizing the associated molecular changes; as well as to explore the impact of hypertension, obesity and diabetes on these processes. MethodsWe will perform echocardiography and assess endothelial function and arterial stiffness (EndoPAT® and pulse wave velocity, respectively) and assess potential markers of remodeling and RR using plasma and urine samples from pregnant women. To translate to a HF context, we will determine the impact of risk factors (hypertension, obesity and diabetes) by studying subgroups of pregnant women with these comorbidities. ResultsNot applicable. ConclusionWe are convinced that understanding the impact of these comorbidities in such a homogeneous population, such as pregnant women, provides a valuable model to unveil the most relevant pathologic and often masked signaling pathways underlying cardiac remodeling and incomplete RR in a heterogeneous population, such as HF patients. Moreover, we expect to identify potential novel biomarkers of RR progression/prognosis more easily.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call