Abstract

Abstract To solve the problem of high fluoride, iron and manganese concentrations in groundwater, serpentine (Srp) was modified by metal salt impregnation, acid–base activation and calcination, and the effects of these three modifications on the removal performance of Srp were compared. Specifically, the effects of the calcined serpentine (Csrp) dose, reaction time, pH, and temperature on the removal performance of F−, Fe2+ and Mn2+ on Csrp were analysed. An isothermal adsorption model and adsorption kinetic equation were established and confirmed through SEM, EDS, XRD and FTIR spectroscopy to analyse the mechanism of removing F−, Fe2+ and Mn2+ by Csrp. The results show that when 3 g/L Csrp was used to treat water samples with 5 mg/L F−, 20 mg/L Fe2+, and 5 mg/L Mn2+ (pH of 6, reaction temperature of 35 °C, and time of 150 min), the removal rates of F−, Fe2+, and Mn2+ were 94.3%, 99.0%, 98.9%, respectively. The adsorption of F−, Fe2+ and Mn2+ on Csrp follows the quasi-second-order kinetic equation and Langmuir isotherm adsorption model. After five cycles of regeneration of Csrp, Csrp can still maintain good properties of fluoride, iron and manganese removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.