Abstract

Centrifugal compressors often suffer relatively low efficiency and a terrible operating range particularly due to the complex flow structure and intense impeller/diffuser interaction. Numerous studies have focused on improving the centrifugal compressor performance using many innovative ideas, such as the tandem impeller, which has become increasingly attractive due to its ability to achieve the flow control with no additional air supply configurations and control costs in compressor. However, few studies that attempted to the investigation of tandem impeller have been published until now and the results are always contradictory. To explore the potential of the tandem impeller to enhance the compressor performance and the underlying mechanism of the flow phenomena in the tandem impellers, this paper numerically investigated a high-pressure-ratio centrifugal compressor with several tandem impellers at off-design operating speeds. The results encouragingly demonstrate that the tandem impeller can achieve a performance enhancement over a wide range of operating conditions. Approximately 1.8% maximum enhancement in isentropic efficiency and 5.0% maximum enhancement in operating range are achieved with the inducer/exducer circumferential displacement of [Formula: see text] = 25% and 50%, respectively. The observed stage performance gain of the tandem impellers decreases when the operating speed increases due to the increased inducer shock, increased wake losses, and deteriorated tandem impeller discharge flow uniformity. In addition, the tandem impeller can extend the impeller operating range particularly at low rotation speeds, which is found to be a result from the suppression of the low-momentum fluid radial movement. The results also indicate that the maximum flux capacity of the tandem impeller decreases due to the restriction of the inducer airfoil Kutta–Joukowsky condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call