Abstract
Calcium signaling has emerged as an important signal transduction pathway of higher plants in response to biotic and abiotic stresses. Ca2+-bound calmodulin (CaM) plays a critical role in decoding and transducing stress signals by activating specific targets. Here, we isolated and functionally characterized the pathogen-responsive CaM gene, Capsicum annuum calmodulin 1 (CaCaM1), from pepper (C. annuum) plants. The cellular function of CaCaM1 was verified by Agrobacterium spp.-mediated transient expression in pepper and transgenic overexpression in Arabidopsis thaliana. Agrobacterium spp.-mediated transient expression of CaCaM1 activated reactive oxygen species (ROS), nitric oxide (NO) generation, and hypersensitive response (HR)-like cell death in pepper leaves, ultimately leading to local acquired resistance to Xanthomonas campestris pv. vesicatoria. CaCaM1-overexpression (OX) Arabidopsis exhibited enhanced resistance to Pseudomonas syringae and Hyaloperonospora parasitica, which was accompanied by enhanced ROS and NO generation and HR-like cell death. Treatment with the calcium-channel blocker suppressed the oxidative and NO bursts and HR-like cell death that were triggered by CaCaM1 expression in pepper and Arabidopsis, suggesting that calcium influx is required for the activation of CaCaM1-mediated defense responses in plants. Upon treatment with the CaM antagonist, virulent P. syringae pv. tomato-induced NO generation was also compromised in CaCaM1-OX leaves. Together, these results suggest that the CaCaM1 gene functions in ROS and NO generation are essential for cell death and defense responses in plants.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have