Abstract
Serum amyloid A (SAA) is a family of proteins encoded by four related genes. Of the four, isoforms 1.1 and 2.1 are acute phase proteins synthesized by the liver. They become major components of the HDL plasma fraction during acute tissue injury and the HDL/SAA complex is readily taken up by macrophages. Herein we investigated the path SAA follows when presented to macrophages as HDL/SAA or in liposomes. Using antibodies specific to SAA and confocal microscopy, or EM autoradiography where only SAA is radio-labeled, we show that HDL/SAA is taken up rapidly by macrophages and within 30 min SAA, or fragments thereof, proceeds through the cytoplasm to the peri-nuclear region and then the nucleus. Within 45–60 min SAA, or fragments thereof, is found back in the cytoplasm and at the plasma membrane where it is subsequently extruded. The observation that SAA, or fragments thereof, traverse the nucleus is a novel finding and may implicate SAA in macrophage gene regulation. It also raises questions by what mechanism SAA enters and leaves the nucleus. We further investigated if both SAA isoforms traffic through the macrophage in a similar manner. Isoform differences were observed. Both isoforms bind well to the plasma membrane of macrophages at 4°C, but at 37°C only SAA2.1 is taken up by the cell in significant quantity, and is observed in the nucleus, suggesting that the two isoforms are handled differently and that they may have discrete physiological roles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.