Abstract
Abstract The aim of this paper is to present several techniques of constructing a lattice-ordered effect algebra from a given family of lattice-ordered effect algebras, and to study the structure of finite lattice-ordered effect algebras. Firstly, we prove that any finite MV-effect algebra can be obtained by substituting the atoms of some Boolean algebra by linear MV-effect algebras. Then some conditions which can guarantee that the pasting of a family of effect algebras is an effect algebra are provided. At last, we prove that any finite lattice-ordered effect algebra E without atoms of type 2 can be obtained by substituting the atoms of some orthomodular lattice by linear MV-effect algebras. Furthermore, we give a way how to paste a lattice-ordered effect algebra from the family of MV-effect algebras.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have