Abstract

Concepts and evolution of multi-scale modelling from the perspective of wave-structure interaction have been discussed. In this regard, both domain and functional decomposition approaches have come into being. In domain decomposition, the computational domain is spatially segregated to handle the far-field using potential flow models and the near field using Navier-Stokes equations. In functional decomposition, the velocity field is separated into irrotational and rotational parts to facilitate identification of the free surface. These two approaches have been implemented alongside partitioned or monolithic schemes for modelling the structure. The applicability of multi-scale modelling approaches has been established using both mesh-based and meshless schemes. Owing to said diversity in numerical techniques, massively collaborative research has emerged, wherein comparative numerical studies are being carried out to identify shortcomings of developed codes and establish best-practices in numerical modelling. Machine learning is also being applied to handle large-scale ocean engineering problems. This paper reports on the past, present and future research consolidating the contributions made over the past 20 years. Some of these past as well as future research contributions have and shall be actualized through funding from the Newton International Fellowship as the next generation of researchers inherits the present-day expertise in multi-scale modelling. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.