Abstract
The work presented in this paper is based on the use of scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS) to study the passivation of atomic scale defect-induced surface states on cleaved III–V (1 1 0) surfaces. This is based on the use of thin Si layers deposited in situ on to the atomically clean surface. The simultaneous STM and STS measurements allowed direct correlation of the structural and electronic properties at the nanoscopic level. The preferential adsorption of Si clusters onto surface defects was achieved using elevated temperature growth on the GaAs(1 1 0) substrate. The STS results clearly indicated local electronic passivation of both step defects and vacancy clusters when the interface is formed at 280 °C. This observation was also confirmed on a macroscopic level using X-ray photoelectron spectroscopy (XPS) under identical conditions. The results are interpreted in terms of the surface bonding of Si with the defect sites. Furthermore, this STM/STS study has been extended to real laser devices where comparable defect features are observed. The implications of defect passivation in nanotechnology are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.