Abstract
BackgroundAlzheimer’s disease (AD) is characterized by senile plaques, extracellular deposits composed primarily of amyloid–beta (Aβ), and neurofibrillary tangles, which are abnormal intracellular inclusions containing hyperphosphorylated tau.The amyloid cascade hypothesis posits that the deposition of Aβ in the brain parenchyma initiates a sequence of events that leads to dementia. However, the molecular process by which the extracellular accumulation of Aβ peptides promotes intracellular pathologic changes in tau filaments remains unclear. To elucidate this process, we presumed that astrocytes might trigger neuronal reactions, leading to tau phosphorylation. In this study, we examined AD pathology from the perspective of the astrocyte-neuron interaction.ResultsA cytokine-array analysis revealed that Aβ stimulates astrocytes to release several chemical mediators that are primarily related to inflammation and cell adhesion. Among those mediators, insulin-like growth factor (IGF)-binding protein 3 (IGFBP-3) was highly upregulated.In AD brains, the expression of IGFBP-3 was found to be increased by western blot analysis, and increased expression of IGFBP-3 was observed in astrocytes via fluorescence microscopy.In addition, we reproduced the increase in IGFBP-3 after treatment with Aβ using human astrocytoma cell lines and found that IGFBP-3 was expressed via calcineurin. In AD brains, the activated forms of calcineurin were found to be increased by western blot analysis, and increased expression of calcineurin was observed in astrocytes via fluorescence microscopy.When Ser9 of glycogen synthase kinase-3β (GSK-3β) is phosphorylated, GSK-3β is controlled and tau phosphorylation is suppressed. Aβ suppresses the phosphorylation of GSK-3β, leading to tau phosphorylation. In this study, we found that IGF-Ι suppressed tau phosphorylation induced by Aβ, although IGFBP-3 inhibited this property of IGF-Ι. As a result, IGFBP-3 contributed to tau phosphorylation and cell death induced by Aβ.ConclusionsOur study suggested that calcineurin in astrocytes was activated by Aβ, leading to IGFBP-3 release. We further demonstrated that IGFBP-3 produced by astrocytes induced tau phosphorylation in neurons. Our study provides novel insights into the role of astrocytes in the induction of tau phosphorylation and suggests that IGFBP-3 could be an important link between Aβ and tau pathology and an important therapeutic target.Electronic supplementary materialThe online version of this article (doi:10.1186/s13041-015-0174-2) contains supplementary material, which is available to authorized users.
Highlights
Alzheimer’s disease (AD) is characterized by senile plaques, extracellular deposits composed primarily of amyloid–beta (Aβ), and neurofibrillary tangles, which are abnormal intracellular inclusions containing hyperphosphorylated tau
We propose a novel pathway in which released Aβ induces Insulin-like growth factor binding protein 3 (IGFBP-3) in astrocytes, which leads to tau phosphorylation via glycogen synthase kinase-3β (GSK-3β) (Fig. 8)
In summary, our study suggested that CaN was activated by Aβ in astrocytes, leading to the release of IGF-binding proteins (IGFBPs)-3
Summary
Alzheimer’s disease (AD) is characterized by senile plaques, extracellular deposits composed primarily of amyloid–beta (Aβ), and neurofibrillary tangles, which are abnormal intracellular inclusions containing hyperphosphorylated tau. The molecular process by which the extracellular accumulation of Aβ peptides promotes intracellular pathologic changes in tau filaments remains unclear. To elucidate this process, we presumed that astrocytes might trigger neuronal reactions, leading to tau phosphorylation. Senile plaques are extracellular deposits that are composed primarily of amyloid–beta (Aβ) [3], which is proteolytically cleaved from amyloid precursor protein (APP) [8, 9]. NFT are abnormal intracellular inclusions that contain hyperphosphorylated tau, which is a microtubuleassociated protein [13, 14]. Aβ oligomers are known to be associated with tau hyperphosphorylation [4], which leads to the disruption of the neuronal cytoskeleton, followed by neurodegeneration and cell death [15, 16]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have