Abstract

Motivated by a relaxed notion of the celebrated Hamiltonian cycle, this paper investigates its variant, parity Hamiltonian cycle (PHC): A PHC of a graph is a closed walk which visits every vertex an odd number of times, where we remark that the walk may use an edge more than once. First, we give a complete characterization of the graphs which have PHCs, and give a linear time algorithm to find a PHC, in which every edge appears at most four times, in fact. In contrast, we show that finding a PHC is NP-hard if a closed walk is allowed to use each edge at most z times for each z=1,2,3 (PHCz for short), even when a given graph is two-edge-connected. We then further investigate the PHC3 problem, and show that the problem is in P when an input graph is four-edge-connected. Finally, we are concerned with three (or two)-edge-connected graphs, and show that the PHC3 problem is in P for any C≥5-free or P6-free graphs. Note that the Hamiltonian cycle problem is known to be NP-hard for those graph classes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.