Abstract
In this paper, we first introduce a novel class of graphs, namely supergrid. Supergrid graphs include grid graphs and triangular grid graphs as their subgraphs. The Hamiltonian cycle and path problems for grid graphs and triangular grid graphs were known to be NP-complete. However, they are unknown for supergrid graphs. The Hamiltonian cycle (path) problem on supergrid graphs can be applied to control the stitching traces of computerized sewing machines. In this paper, we will prove that the Hamiltonian cycle problem for supergrid graphs is NP-complete. It is easily derived from the Hamiltonian cycle result that the Hamiltonian path problem on supergrid graphs is also NP-complete. We then show that two subclasses of supergrid graphs, including rectangular (parallelism) and alphabet, always contain Hamiltonian cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.