Abstract

Fingerprinting operators generate functional signatures of game players and are useful for their automated analysis independent of representation or encoding. The theory for a fingerprinting operator which returns the length-weighted probability of a given move pair occurring from playing the investigated agent against a general parametrized probabilistic finite-state transducer (PFT) is developed, applicable to arbitrary iterated games. Results for the distinguishing power of the 1-state opponent model, uniform approximability of fingerprints of arbitrary players, analyticity and Lipschitz continuity of fingerprints for logically possible players, and equicontinuity of the fingerprints of bounded-state probabilistic transducers are derived. Algorithms for the efficient computation of special instances are given; the shortcomings of a previous model, strictly generalized here from a simple projection of the new model, are explained in terms of regularity condition violations, and the extra power and functional niceness of the new fingerprints demonstrated. The 2-state deterministic finite-state transducers (DFTs) are fingerprinted and pairwise distances computed; using this the structure of DFTs in strategy space is elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.