Abstract
This paper proposes a character generation approach for the M.U.G.E.N. fighting game that can create engaging AI characters using a computationally cheap process without the intervention of the expert developer. The approach uses a genetic programming algorithm that refines randomly generated character strategies into better ones using tournament selection. The generated AI characters were tested by 27 human players and were rated according to results, perceived difficulty and how engaging the gameplay was. The main advantages of this procedure are that no prior knowledge of how to code the strategies of the AI character is needed and there is no need to interact with the internal code of the game. In addition, the procedure is capable of creating a wide diversity of players with different strategic skills, which could be potentially used as a starting point to a further adaptive process.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have