Abstract

Russell claims in his autobiography and elsewhere that he discovered his 1905 theory of descriptions while attempting to solve the logical and semantic paradoxes plaguing his work on the foundations of mathematics. In this paper, I hope to make the connection between his work on the paradoxes and the theory of descriptions and his theory of incomplete symbols generally clearer. In particular, I argue that the theory of descriptions arose from the realization that not only can a class not be thought of as a single thing, neither can the meaning/intension of any expression capable of singling out one collection (class) of things as opposed to another. If this is right, it shows that Russell’s method of solving the logical paradoxes is wholly incompatible with anything like a Fregean dualism between sense and reference or meaning and denotation. I also discuss how this realization lead to modifications in his understanding of propositions and propositional functions, and suggest that Russell’s confrontation with these issues may be instructive for ongoing research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.