Abstract
Let q be a principal unit of the ring of valuation of a complete valued field K, extension of the field of p-adic numbers. Generalizing Mahler basis, K. Conrad has constructed orthonormal basis, depending on q, of the space of continuous functions on the ring of p-adic integers with values in K. Attached to q there are two models of the quantum plane and a model of the quantum Weyl algebra, as algebras of bounded linear operators on the space of p-adic continuous functions. For q not a root of unit, interesting orthonormal (orthogonal) families of these algebras are exhibited and providing p-adic completion of quantum plane and quantum Weyl algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: P-Adic Numbers, Ultrametric Analysis, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.