Abstract

In this paper, we report the preparation, spectroscopic and theoretical characterization, and reactivity studies of a Co(IV)-oxo complex bearing an N4-macrocyclic coligand, 12-TBC (12-TBC = 1,4,7,10-tetrabenzyl-1,4,7,10-tetraazacyclododecane). On the basis of the ligand and the structure of the Co(II) precursor, [CoII(12-TBC)(CF3SO3)2], one would assume that this species corresponds to a tetragonal Co(IV)-oxo complex, but the spectroscopic data do not support this notion. Co K-edge XAS data show that the treatment of the Co(II) precursor with iodosylbenzene (PhIO) as an oxidant at -40 °C in the presence of a proton source leads to a distinct shift in the Co K-edge, in agreement with the formation of a Co(IV) intermediate. The presence of the oxo group is further demonstrated by resonance Raman (rRaman) spectroscopy. Interestingly, the EPR data of this complex show a high degree of rhombicity, indicating structural distortion. This is further supported by the EXAFS data. Using DFT calculations, a structural model is developed for this complex with a ligand-protonated structure that features a Co═O···HN hydrogen bond and a four-coordinate Co center in a seesaw-shaped coordination geometry. Magnetic circular dichroism (MCD) spectroscopy further supports this finding. The hydrogen bond leads to an interesting polarization of the Co-oxo π-bonds, where one O(p) lone-pair is stabilized and leads to a regular Co(d) interaction, whereas the other π-bond shows an inverted ligand field. The reactivity of this complex in hydrogen atom and oxygen atom transfer reactions is discussed as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.