Abstract

Outer-sphere electron transfer from styrene, thioanisole, and toluene derivatives to a triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complex, [(N4Py)MnIV(O)]2+-(HOTf)2 (N4Py = N, N-bis(2-pyridylmethyl)- N-bis(2-pyridyl)methylamine), has been shown to be the rate-determining step of different types of redox reactions such as epoxidation, sulfoxidation, and hydroxylation of styrene, thioanisole, and toluene derivatives, respectively, by [(N4Py)MnIV(O)]2+-(HOTf)2. The rate constants of HOTf-promoted epoxidation of all styrene derivatives with [(N4Py)MnIV(O)]2+ and electron transfer from electron donors to [(N4Py)MnV(O)]2+ exhibit a remarkably unified correlation with the driving force of outer-sphere electron transfer in light of the Marcus theory of electron transfer. The same electron-transfer driving force dependence is observed in the oxygen atom transfer from [(N4Py)MnIV(O)]2+-(HOTf)2 to thioanisole derivatives as well as in the hydrogen atom transfer from toluene derivatives to [(N4Py)MnIV(O)]2+-(HOTf)2. Thus, mechanisms of oxygen atom transfer (epoxidation and sulfoxidation) reactions of styrene and thioanisole derivatives and hydrogen atom transfer (hydroxylation) reactions of toluene derivatives by [(N4Py)MnIV(O)]2+-(HOTf)2 have been unified for the first time as the same reaction pathway via outer-sphere electron transfer, followed by the fast bond-forming step, which exhibits the singly unified electron-transfer driving force dependence of the rate constants as outer-sphere electron-transfer reactions. In the case of the epoxidation of cis-stilbene by [(N4Py)MnIV(O)]2+-(HOTf)2, the isomerization of cis-stilbene radical cation to trans-stilbene radical cation occurs after outer-sphere electron transfer from cis-stilbene to [(N4Py)MnIV(O)]2+-(HOTf)2 to yield trans-stilbene oxide selectively, which is also taken as evidence for the occurrence of electron transfer in the acid-catalyzed epoxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.