Abstract

Type 2 diabetes mellitus has been classified as the epidemic of the XXI century, making it a global health challenge. Currently, the commonly used treatment for this disease is acarbose, however, the high cost of this medicine has motivated the search for new alternatives. In this work, the maysin, a characteristic flavonoid from maize inflorescences, and its aglycon version, luteolin, are proposed as acarbose substitutes. For this, a theoretical comparative analysis was conducted on the molecular interactions of acarbose, maysin, and luteolin with human maltase-glucoamylase (NtMGAM), as well as their oxidative process. The binding energies in the active site of NtMGAM with acarbose, maysin, and luteolin molecules were predicted using a molecular docking approach applying the Lamarckian genetic algorithm method. Theoretical chemical reactivity parameters such as chemical hardness (η) and chemical potential (µ) of the acarbose, maysin, and luteolin molecules, as well as of the amino acids involved in the active site, were calculated using the electronic structure method called Density Functional Theory (DFT), employing the M06 meta-GGA functional in combination with the 6-31G(d) basis set. Furthermore, a possible oxidative process has been proposed from quantum-chemical calculations of the electronic charge transfer values (ΔN), between the amino acids of the active site and the acarbose, maysin, and luteolin. Molecular docking predictions were complemented with molecular dynamics simulations. Hence, it was demonstrated that the solvation of the protein affects the affinity order between NtMGAM and ligands.

Highlights

  • Type 2 diabetes mellitus has increased all over the world

  • These dihedral angles can exhibit possible steric impediments that ligands could have within the active site of the maltase-glucoamylase (NtMGAM)

  • We have presented a study that covers theoretical predictions from quantum chemistry to the molecular dynamics level, including molecular docking

Read more

Summary

Introduction

Type 2 diabetes mellitus has increased all over the world. This sickness is the result of the interaction between a genetic predisposition, and behavioral and environmental risk factors [1]. This disease is treated with different drugs, acarbose (ACA) being one of them. In addition to its side effects as flatulence and diarrhea [5], another disadvantage of the ACA is the high cost in the market. According to the World Health Organization, the ACA has a price between.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.