Abstract

The oxidative biotransformation of the anticancer drug 7-hydroxy-2-[2-[(2-hydroxyethyl)amino]ethyl]-5-[[2-[(2-hydroxyethyl)amino]ethyl]amino]anthra[1,9-cd]pyrazol-6(2H)-one dihydrochloride (losoxantrone, CI-941) after incubation of primary cultures of rat hepatocytes has been investigated. The structures of twelve losoxantrone metabolites have been elucidated by means of high-performance liquid chromatography-mass spectometry, tandem mass spectrometry, and two-dimensional NMR. In these mammalian hepatocytes, the CI-941 biotransformation includes a monohydroxylation of the phenolic substructure of the CI-941-chromophore via cytochrome P450 catalysis, resulting in metabolites having an ortho- and para-hydroquinonoid substructure, respectively. The identification of a glutathione conjugate as a follow-up metabolite confirms the oxidative activation of the ortho-hydroxylated losoxantrone metabolite. The oxidative activation establishes the ability of CI-941 to form covalent bonds to intracellular nucleophilic targets. Furthermore, the CI-941 metabolism was shown to be extremely suppressed in rat hepatocytes incubated with metyrapone. In contrast to these results, human tumor HepG2 cells did not show any CI-941 biotransformation after incubation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.