Abstract
In the ovary, follicular growth and maturation are complicated processes that involve a series of morphological and physiological changes in oocytes and somatic cells leading to ovulation and luteinization, essential processes for fertility. Given the complexity of ovulation, characterization of genome-wide regulatory elements is essential to understand the mechanisms governing the expression of specific genes in the rapidly differentiating follicle. We therefore employed a systems biology approach to determine global transcriptional mechanisms during the early stages of the ovulatory process. We demonstrate that, following the hormonal signal that initiates ovulation, granulosa cells undergo major modification of distal regulatory elements, which coincides with cistrome reprogramming of the indispensable orphan nuclear receptor liver receptor homolog-1 (LRH-1). This cistromic reorganization correlates with the extensive changes in gene expression in granulosa cells leading to ovulation. Together, our study yields a highly detailed transcriptional map delineating ovarian cell differentiation during the initiation of ovulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.