Abstract

Titanium (Ti) and its alloys are widely used in dental implants due to their favorable mechanical properties and biocompatibility. Surface characteristics, including physical and chemical properties, are crucial factors to enhance the osteogenesis performance of Ti. The aim of this study is to evaluate amino group surface modification to facilitate the osteogenic potential and bone repair of dental implants both in vitro and in vivo. Herein, amino group-modified Ti surfaces were constructed via the plasma-enhanced chemical vapor deposition (PECVD) technique with an allylamine monomer. The adhesion, proliferation, alkaline phosphate activity and osteogenesis-related genetic expression of MG-63 cells on the surfaces were performed in vitro and presented a significant increase in amino group-modified Ti compared with that in Ti. The in vivo study in miniature pigs was evaluated through micro-computed tomography analysis and histological evaluation, which exhibited enhanced new bone formation in amino group-modified Ti compared with that in Ti after implantation for 4, 8 and 12 weeks. Consequently, amino group surface modification with the PECVD technique may provide a promising modification method to enhance the osteogenesis performance of Ti implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call