Abstract

In this study, tissue scaffolds mimicking hierarchical morphology are constructed and proposed for bone augmentation. The scaffolds are fabricated using lyophilization, before coating them with collagen (Col). Subsequently, the Col-coated scaffolds undergo a second lyophilization, followed by silk fibroin (SF) coating, and a third lyophilization. Thereafter, the scaffolds are divided into six groups with varying ratios of Col to SF: Col/SF = 7:3, 5:5, 3:7, 10:0, and 0:10, with an SF scaffold serving as the control group. The scaffold morphology is examined using a scanning electron microscope, while molecular and structural formations are characterized by Fourier transform infrared spectrometer and differential scanning calorimeter, respectively. Physical and mechanical properties including swelling and compression are tested. Biological functions are assessed throughin vitroosteoblast cell culturing. Biomarkers indicative of bone formation-cell viability and proliferation, alkaline phosphatase activity, and calcium content-are analyzed. Results demonstrate that scaffolds coated with Col and SF exhibit sub-porous formations within the main pore. The molecular formation reveals interactions between the hydrophilic groups of Col and SF. The scaffold structure contains bound water and SF formation gets disrupted by Col. Physical and mechanical properties are influenced by the Col/SF ratio and morphology due to coating. The biological functions of scaffolds with Col and SF coating show enhanced potential for promoting bone tissue formation, particularly the Col/SF (7:3) ratio, which is most suitable for bone augmentation in small defect areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.