Abstract

The interaction between a lattice dislocation and non-shearable precipitates has been well explained by the Orowan bypass mechanism. The calculated additional shear stress facilitates the evaluation of precipitation hardening in metallic alloys. The lack of information about how a twinning dislocation behaves in the same scenario hinders our understanding of the strengthening against twin-mediated plasticity in magnesium alloys. In the current study, the bowing and bypassing of a twining dislocation impeded by impenetrable obstacles are captured by atomistic simulations. The Orowan stress measurement is realized by revealing the stick-slip dynamics of a twinning dislocation. The measured Orowan stress significantly deviate from what classic theory predicts. This deviation implies that the line tension approximation may generally overestimate the Orowan stress for twinning dislocations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call