Abstract

Transformation of cells in culture is a model system for carcinogenesis, and two major theories (i.e., mutagenesis and aneuploidy) have emerged from in vitro and in vivo studies. A third view is presented here on the initial steps in the change of primary cells to extended life cells, and their change to immortalized cells. Both changes involve identical, microscopically visible cell abnormalities hitherto dismissed as cell degenerative characteristics. The major cell changes (i.e., giant cells, nuclear fragmentation to form multinucleated cells [MNC]) translated into genetic terms begin with the creation of polyploidy by DNA endoreduplication, followed by amitotic division of these giant cells to produce MNC. Individual nuclei, surrounded by a cell membrane, bud from the surface of the MNC, and represent the origin of the transformed cells. Induced budding by a protease treatment of MNC suggests that the extracellular matrix is an inhibitor of the budding process from human MNC. The production of the MNC is a genetic process determined by two abnormal events (i.e., overproduction of DNA and amitotic chromosomal segregation) during which there are possibilities for different genetic mechanisms to produce inherited variability within and between MNC. These concepts are discussed in regard to carcinogenesis, and by extension its possible prevention by use of the special cytopathic cell changes in carcinogen testing and in clinical screening programs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call