Abstract

The Apollo orbital geochemistry, photogeologic, and other remote sensing data sets were used to identify and characterize geochemical anomalies on the eastern limb and farside of the Moon and to investigate the processes responsible for their formation. The anomalies are located in the following regions: (1) Balmer basin, (2) terrain northeast of Mare Smythii, (3) near Langemak crater, (4) Pasteur crater, (5) terrain northwest of Milne basin, (6) northeast of Mendeleev basin, (7) north and northeast of Korolev basin, (8) terrain north of Taruntius crater, and (9) terrain north of Orientale basin. The anomalies are commonly associated with Imbrian- or Nectarian-aged light plains units which exhibit dark-haloed impact craters. The results of recent spectral reflectance studies of dark-haloed impact craters plus consideration of the surface chemistry of the anomalies strongly indicate that those geochemical anomalies associated with light plains deposits which display dark-haloed impact craters result from the presence of basaltic units that are either covered by varying thickness of highland debris or have a surface contaminated with significant amounts of highlands material. The burial or contamination of ancient volcanic surfaces by varying amounts of highland material appears to have been an important (though not the dominant) process in the formation of lunar light plains. Basaltic volcanism on the eastern limb and farside of the Moon was more extensive in both space and time than has been accepted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call