Abstract

We observed very pronounced polarization of light emitted by highly aligned free-standing multiwall carbon nanotube (MWNT) sheet in axial direction which is turned to the perpendicular polarization when a number of layers are increased. The radiation spectrum of resistively heated MWNT sheet closely follows to the Plank's blackbody radiation distribution. The obtained polarization features can be described by a classical dielectric cylindrical shell model, taking into consideration the contribution of delocalized π-electrons ( π surface plasmons). In absorption (emission) the optical transverse polarizability, which is much smaller than longitudinal one, is substantially suppressed by depolarization effect due to screening by induced charges. This phenomenon suggests very simple and precise method to estimate the alignment of nanotubes in bundles or large assemblies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.