Abstract

In Part 1 of this work, we showed that our new model of cosmology can account for the origin of all cosmic structures ranging in size from stars up to superclusters. In this model, at the time of nucleosynthesis, an imprint embedded in the vacuum regulated the creation of the protons (and electrons) that later made up the structures. Immediately after nucleosynthesis and for a considerable period afterward, the evolution was completely determined by the expansion of the universe. Gradually, however, gravitational influences became more important until finally, the expansion of the structures-to-be ceased at their zero velocity points. Stars, galaxies, and galaxy clusters all reached their zero velocity points more or less simultaneously at the usually accepted time of the beginning of galaxy formation. From that point onward, the evolution gravitation came to dominate the evolution although the expansion still exerted its influence. In this paper, we examine the subsequent cluster evolution in some detail. We establish the conditions required to prevent a free-fall collapse of the clusters and then show that galaxies with quasar-like active nuclei located within the cluster were the sources of the necessary radiation. We also show that the required galactic supermassive black holes were a consequence of the initial free-fall collapse of all galaxies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.