Abstract

Land, L.S. and Prezbindowski, D.R., 1981. The origin and evolution of saline formation water, Lower Cretaceous carbonates, south-central Texas, U.S.A. In: W. Back and R. Létolle (Guest-Editors), Symposium on Geochemistry of Groundwater — 26th International Geological Congress. J. Hydrol., 54: 51ndash;74. Systematic chemical variation exists in formation water collected from a dip section through Lower Cretaceous rocks of south-central Texas. Chemical variation can be explained by an interactive water—rock diagenetic model. The cyclic Lower Cretaceous shelf carbonates of the Edwards Group dip into the Gulf of Mexico Coast “geosyncline”, and can be considered, to a first approximation, as part of a complex aquifer contained by Paleozoic basement beneath, and by relatively impermeable Upper Cretaceous clay and chalk above. The hydrodynamic character of this carbonate system is strongly controlled by major fault systems. Major fault systems serve as pathways for vertical movement of basinal brines into the Lower Cretaceous section. Formation water movement in this sytem has strong upfault and updip components. The “parent” Na—Ca—Cl brine originates deep in the Gulf of Mexico basin, at temperatures between 200 and 250°;C, by the reaction: halite + detrital plagioclase + quartz + water → albite + brine Other dissolved components originate by reaction of the fluid with the sedimentary phases, K-feldspar, calcite, dolomite, anhydrite, celestite, barite and fluorite. Significant quantities of Pb, Zn and Fe have been mobilized as well. As the brine moves updip out of the overpressured deep Gulf of Mexico basin, and encounters limestones of the Stuart City Reef Trend (the buried platform margin), small amounts of galena precipitate in late fractures. Continuing to rise upfault and updip, the brine becomes progressively diluted. On encountering significant quantities of dolomite in the backreef facies, the Ca-rich brine causes dedolomitization. Although thermochemical consideration suggests that small amounts of several authigenic phases should precipitate, most have yet to be found. Minor amounts of several kinds of calcite spar are present, however. As the brine evolves by dilution and by cooling, no systematic changes in any cation/Cl ratio occur, except for regular updip gain in Mg as a result of progressive dedolomitization. The formation water, highly diluted by meteoric water, eventually discharges along faults as hot mineral water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.