Abstract
Microprocessor clock frequency has improved by nearly 40% annually over the past decade. This improvement has been provided, in equal measure, by smaller technologies and deeper pipelines. From our study of the SPEC 2000 benchmarks, we find that for a high-performance architecture implemented in 100nm technology, the optimal clock period is approximately 8 fan-out-of-four (FO4) inverter delays for integer benchmarks, comprised of 6 FO4 of useful work and an overhead of about 2 FO4. The optimal clock period for floating-point benchmarks is 6 FO4. We find these optimal points to be insensitive to latch and clock skew overheads. Our study indicates that further pipelining can at best improve performance of integer programs by a factor of 2 over current designs. At these high clock frequencies it will be difficult to design the instruction issue window to operate in a single cycle. Consequently, we propose and evaluate a high-frequency design called a segmented instruction window.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.