Abstract
We discuss the optical polarization properties of X-ray-selected BL Lacertae objects (XSBLs) as determined from 3 yr of monitoring the polarization of 37 BL Lac objects and candidates. The observed objects include a complete X-ray flux limited sample drawn from the Einstein Extended Medium Sensitivity Survey (EMSS). We find that the majority of the XSBLs classified solely on the appearance of their optical spectra are true members of the class of BL Lacertae objects since they possess intrinsically polarized and variable continua. The duty cycle of polarized emission (fraction of time spent with the degree of polarization greater than 4%) from XSBLs is 44%. The maximum observed percent polarizations are of order 10%, considerably below the maximum values observed for radio-selected BL Lacertae objects and blazars (30%-40%). While XSBLs have variable polarized emission, the majority (approximately equal to 85%) have preferred polarization position angles on timescales at least as long as 3 yr. This reflects stability in the geometry of the region emitting the linearly polarized optical emission. We describe the spectral dependence of the degree of polarization and discuss some of the possible mechanisms producing the observed characteristics. While dilution of the polarized emission by the host galaxy starlight is certainly present in some objects, we demonstrate that the average polarization properties of XSBLs derived from our observations are not drastically affected by this effect. While the confirmed BL Lac objects are shown to be photometric variables, the objects in our monitored sample did not display the larger than 1 mag variations generally used to characterize the optical variability of radio-selected BL Lacertae objects or blazars in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.