Abstract

Comparing transcriptome profiling between younger and older samples reveals genes related to aging and provides insight into the biological functions affected by aging. Recent research has identified sex, tissue, and cell type-specific age-related changes in gene expression. This study reports the overall picture of the opposite aging effect, in which aging increases gene expression in one cell subset and decreases it in another cell subset. Using the Tabula Muris Senis dataset, a large public single-cell RNA sequencing dataset from mice, we compared the effects of aging in different cell subsets. As a result, the opposite aging effect was observed widely in the genes, particularly enriched in genes related to ribosomal function and translation. The opposite aging effect was observed in the known aging-related genes. Furthermore, the opposite aging effect was observed in the transcriptome diversity quantified by the number of expressed genes and the Shannon entropy. This study highlights the importance of considering the cell subset when intervening with aging-related genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.