Abstract
In this article we implement an operational matrix of fractional integration for Legendre polynomials. We proposed an algorithm to obtain an approximation solution for fractional differential equations, described in Riemann-Liouville sense, based on shifted Legendre polynomials. This method was applied to solve linear multiorder fractional differential equation with initial conditions, and the exact solutions obtained for some illustrated examples. Numerical results reveal that this method gives ideal approximation for linear multi-order fractional differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.