Abstract
Some physical problems in science and engineering are modelled by the parabolic partial differential equations with nonlocal boundary specifications. In this paper, a numerical method which employs the Bernstein polynomials basis is implemented to give the approximate solution of a parabolic partial differential equation with boundary integral conditions. The properties of Bernstein polynomials, and the operational matrices for integration, differentiation and the product are introduced and are utilized to reduce the solution of the given parabolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.