Abstract
The sol–gel method was used to prepare rattan-based silicon carbide (R–SiC) composite ceramics under different pyrolysis parameters through adjustment of the temperature and retention time of the one-step pyrolysis process. The crystalline phases, microscopic morphology, element distribution and specific surface area of the silicon carbide (SiC) were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), X-ray fluorescence spectrometer (XRF), field-emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and N2 physisorption. The results showed that the R–SiC prepared at different pyrolysis parameters was able to retain the porous structure of pristine rattan stem. The R–SiC prepared at 1500 ℃ for 120 min possessed the lowest density (0.25 g/cm3), the largest specific surface area (43.38 m2/g) and the highest SiC yield (44.24%). The SiC whisker was the major SiC morphology on the cross section of the R–SiC. Furthermore, the pyrolysis parameters were optimized with the SiC preparation process reaction mechanism, and material transformation methods were also discussed. This one-step pyrolysis process simplified the preparation of biogenic SiC ceramics and thus provided a potential route for the value-added utilization of rattan.
Highlights
Silicon carbide (SiC) ceramics is a high-performing structural ceramic material
The mass residue of the rattan-based silicon carbide (R–SiC) samples decreases with increasing temperature and retention time
The specific surface areas of the samples goes up with increasing pyrolysis temperature and retention time, as the SiO2 sol is coated on the surface of the pore structure or accumulated in the pores after passing through the gel before pyrolysis
Summary
Silicon carbide (SiC) ceramics is a high-performing structural ceramic material. It has extremely high hardness and mechanical strength, great thermal stability, superior electrical properties and chemical inertness [1]. It is widely used in many industries such as automobiles, aerospace, electronic machinery, and nuclear magnetic field, and potentially has wide applications [2]. Li et al J Wood Sci (2021) 67:58 reactants. It may result in the low probability of intermolecular collisions. In order to effectively overcome this problem, more suitable raw materials are used to increase the contact area between the reactants to reduce the reaction temperature [10, 11]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have