Abstract

AbstractThe binary neutron star merger gravitational-wave event GW170817 and observations of the subsequent electromagnetic signals at different wavelengths have helped better understand the outflows that follow these mergers. In particular, the off-axis afterglow of the jetted ejecta has allowed to probe the lateral structure of such jets, especially thanks to VLBI imagery of the source. In this work, we model this afterglow including a decelerating jet with lateral structure, while synchrotron emission and synchrotron self-Compton scatterings power the jet radiation. In particular, we extend our analysis to very high energies and predict the light curve in the energy range of H.E.S.S. and the CTA. We finally discuss how future detections of afterglows by these observatories can help break the degeneracies in some key physical parameter measurements, and allow to probe efficiently a sub-population of fast-merging binaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.