Abstract

The first multimessenger observation of a binary neutron star (BNS) merger in August 2017 demonstrated the huge scientific potential of these extraordinary events. This breakthrough led to a number of discoveries and provided the best evidence that BNS mergers can launch short gamma-ray burst (SGRB) jets and are responsible for a copious production of heavy r-process elements. On the other hand, the details of the merger and post-merger dynamics remain only poorly constrained, leaving behind important open questions. Numerical relativity simulations are a powerful tool to unveil the physical processes at work in a BNS merger and as such they offer the best chance to improve our ability to interpret the corresponding gravitational wave (GW) and electromagnetic emission. Here, we review the current theoretical investigation on BNS mergers based on general relativistic magnetohydrodynamics simulations, paying special attention to the magnetic field as a crucial ingredient. First, we discuss the evolution, amplification, and emerging structure of magnetic fields in BNS mergers. Then, we consider their impact on various critical aspects: (i) jet formation and the connection with SGRBs, (ii) matter ejection, r-process nucleosynthesis, and radiocatively-powered kilonova transients, and (iii) post-merger GW emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.