Abstract

Recent state transition of the Beaufort Gyre has drawn great interest in the Arctic research community, but how the upper ocean hydrographic structure varies with this transition remains poorly understood. The upper ocean mixed layer plays an important role in climatic and ecological processes. Therefore, we analyze the Ice-Tethered Profiler (ITP) observations over the last two decades (2004–2022) to investigate the long-term trend of the mixed layer in the Arctic Ocean’s Beaufort Gyre (BG) from an observational perspective. Results show that the linear trend of the BG surface mixed layer depth (MLD) before and after 2015 has changed significantly, characterized by the vanishing or even reversal of the significant deepening trend. This transition is most pronounced in winter. The BG winter mixed layer is significantly cooler, saltier and denser in the mid-transition period (2013–2017) compared to the pre-transition period (2004–2012), but becomes significantly warmer, fresher and lighter in the post-transition period (2018–2022). The transition feature of the depth of maximum buoyancy frequency in the upper BG is similar to that of MLD, while this maximum decreases significantly in both the mid- and post-transition period when compared to their previous period. The deepening signal of MLD is propagated eastward, which coincides with the recent transition of BG position and freshwater distribution. Mechanism analysis further reveals that the reversal of winter MLD trend before and after 2015 may be due to changes in surface wind stirring and Ekman pumping. This study extends the investigation of the recent state transition of BG considering the upper hydrographic structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call