Abstract
Abstracts: There are residual stresses in the joint caused by swift temperature variation in the process of laser transmission welding with metal absorbent. However, the related forming process is hard to detect through experimental methods. Herein, a physical model is established to describe the evolution of stress during the welding of polyarylsulfone (PASF) and polycarbonate (PC). The evolution of heat stress and the forming of residual stress is analyzed through the method of heat-force sequential coupling. In this process, the condensate transition, metal powder deformation, and clamping forces are involved in the mathematical model of stress-strain. In this model, the stress history can be divided into n time intervals according to the principle of superimposed stresses. The results revealed a significant correlation between the thermal history and stress evolution. Furthermore, the maximum von-mises stress appeared at the time of 1.7 s, then there was a decreasing tendency and stabled at 9 s. The von-mises stress was considered as residual stress after that time and the related stress distribution was investigated. The findings of this study provide a comprehensive understanding of residual stress on the joint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Material Science and Technology Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.