Abstract
Giles and Joseph (Bull. Austral. Math. Soc. 11 (1974), 31–36), proved that the numerical range of an unbounded operator on a Banach space has a certain density property. They showed, in particular, that the numerical range of an unbounded operator on certain Banach spaces is dense in the scalar field. We prove that the numerical range of an unbounded operator on a Banach space is always dense in the scalar field.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have