Abstract

The current-perpendicular-to-plane (CPP) giant-magnetoresistance (GMR) of spin valves with Fe50Co50 alloy was investigated. It has been reported that the Cu inserted in Fe50Co50 is effective for enhancing CPP-GMR. In this paper, we investigated the number of Cu lamination effect on CPP-GMR and clarified that higher CPP-GMR is obtained by decreasing the number of Cu layers. In order to ascertain the reason for this tendency, the crystalline structure and magnetization were examined. As a result, it was found that the d spacing of Fe50Co50 increases when the number of Cu layers is increased, although saturation magnetization does not change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.