Abstract
This paper is focused on looking for links between the topology of a connected and non-compact surface with finitely many ends and any proper discrete Morse function which can be defined on it. More precisely, we study the non-compact surfaces which admit a proper discrete Morse function with a given number of critical elements. In particular, given any of these surfaces, we obtain an optimal discrete Morse function on it, that is, with the minimum possible number of critical elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.