Abstract
In this work we answer an open question asked by Johnson–Scoville. We show that each merge tree is represented by a discrete Morse function on a path. Furthermore, we present explicit constructions for two different but related kinds of discrete Morse functions on paths that induce any given merge tree. A refinement of the used methods allows us to define notions of equivalence of discrete Morse functions on trees which give rise to a bijection between equivalence classes of discrete Morse functions and isomorphism classes of certain labeled merge trees. We also compare our results to similar ones from the literature, in particular to work by Curry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.