Abstract
Canalizing functions have important applications in physics and biology. For example, they represent a mechanism capable of stabilizing chaotic behavior in Boolean network models of discrete dynamical systems. When comparing the class of canalizing functions to other classes of functions with respect to their evolutionary plausibility as emergent control rules in genetic regulatory systems, it is informative to know the number of canalizing functions with a given number of input variables. This is also important in the context of using the class of canalizing functions as a constraint during the inference of genetic networks from gene expression data. To this end, we derive an exact formula for the number of canalizing Boolean functions of n variables. We also derive a formula for the probability that a random Boolean function is canalizing for any given bias p of taking the value 1. In addition, we consider the number and probability of Boolean functions that are canalizing for exactly k variables. Finally, we provide an algorithm for randomly generating canalizing functions with a given bias p and any number of variables, which is needed for Monte Carlo simulations of Boolean networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.