Abstract

Segregation of chromosomes during cell division requires correct formation of mitotic spindles. Here, we show that a scaffold attachment factor A (SAF-A), also known as heterogeneous nuclear ribonucleoprotein-U, contributes to the attachment of spindle microtubules (MTs) to kinetochores and spindle organization. During mitosis, SAF-A was localized at the spindles, spindle midzone and cytoplasmic bridge. Depletion of SAF-A by RNA interference induced mitotic delay and defects in chromosome alignment and spindle assembly. We found that SAF-A specifically co-immunoprecipitated with the chromosome peripheral protein nucleolin and the spindle regulators Aurora-A and TPX2, indicating that SAF-A is associated with nucleolin and the Aurora-A-TPX2 complex. SAF-A was colocalized with TPX2 and Aurora-A in spindle poles and MTs. Elimination of TPX2 or Aurora-A from cells abolished the association of SAF-A with the mitotic spindle. Interestingly, SAF-A can bind to MTs and contributes to the targeting of Aurora-A to mitotic spindle MTs. Our finding indicates that SAF-A is a novel spindle regulator that plays an essential role in kinetochore-MT attachment and mitotic spindle organization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.