Abstract
The Amt proteins constitute a ubiquitous family of transmembrane ammonia channels that permit the net uptake of ammonium by cells. In many organisms, there is more than one amt gene, and these genes are subjected to nitrogen control. The mature Amt protein is a homo- or heterooligomer of three Amt subunits. We previously characterized an amt1 gene in the unicellular cyanobacterium Synechococcus elongatus strain PCC 7942. In this work, we describe the presence in this organism of a second amt gene, amtB, which encodes a protein more similar to the bacterial AmtB proteins than to any other characterized cyanobacterial Amt protein. The expression of amtB took place in response to nitrogen step-down, required the NtcA transcription factor, and occurred parallel to the expression of amt1. However, the transcript levels of amtB measured after 2 h of nitrogen deprivation were about 100-fold lower than those of amt1. An S. elongatus amtB insertional mutant exhibited an activity for uptake of [14C]methylammonium that was about 55% of that observed in the wild type, but inactivation of amtB had no noticeable effect on the uptake of ammonium when it was supplied at a concentration of 100 microM or more. Because an S. elongatus amt1 mutant is essentially devoid of [14C]methylammonium uptake activity, the mature Amt transporter is functional in the absence of AmtB subunits but not in the absence of Amt1 subunits. However, the S. elongatus amtB mutant could not concentrate [14C]methylammonium within the cells to the same extent as the wild type. Therefore, AmtB is necessary for full methylammonium uptake activity in S. elongatus.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have