Abstract

Rare isotopes are produced at the NSCL by projectile fragmentation at energies on the order of 100MeV/u for a wide range of research. In order to provide these exotic ions to low-energy high precision experiments such as the Penning-trap mass spectrometer LEBIT and the collinear laser spectroscopy setup, or to the NSCL’s re-accelerator (ReA), the beam must be slowed down into the eV range by solid degraders and interaction with buffer gas. A novel gas-filled reverse cyclotron is currently under construction by the NSCL and will complement a recently installed linear gas-filled cell. The new device is based on a 2.6T maximum-field cyclotron-type three-sectored magnet to confine the injected beam while it is slowed down in ≈100mbar of high-purity helium gas, cooled to liquid-nitrogen temperature. Once thermalized, the beam is transported to the center of the device by a novel RF-carpet system, extracted along the symmetry axis and accelerated to a few tens of keV of energy for delivery to the users.The device has been characterized in numerous simulations with full 3D models of its magnetic field. The beam transport has been modeled from the fragment separator to the point where they reach thermal energies. The simulations indicate that very efficient stopping and fast extraction will be possible even for light and medium-mass ions, which are difficult to efficiently thermalize in linear gas cells. Construction of the device is well underway and initial tests are planned for later this year. The design and the predicted performance of the machine is discussed and its construction status is given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call