Abstract
Here, we have characterized 3-cyclopropyl-1-(4-(6-((1,1-dioxidothiomorpholino)methyl)-5-fluoropyridin-2-yl)benzyl)imidazolidine-2,4-dione hydrochloride (LEI-101) as a novel, peripherally restricted cannabinoid CB2 receptor agonist, using both in vitro and in vivo models. We investigated the effects of LEI-101 on binding and functional activity. We assessed its in vitro and in vivo selectivity. Efficacy of LEI-101 was determined in a mouse model of cisplatin-induced nephrotoxicity. LEI-101 behaved as a partial agonist at CB2 receptors using β-arrestin and GTPγS assays and was ~100-fold selective in CB2 /CB1 receptor-binding assays. It did not display any activity on endocannabinoid hydrolases and nor did it react with serine hydrolases in an activity-based protein profiling assay. In mice, LEI-101 had excellent oral bioavailability reaching high concentrations in the kidney and liver with minimal penetration into the brain. LEI-101 up to a dose of 60 mg·kg(-1) (p.o.) did not exert any CNS-mediated effects in the tetrad assay, in mice. LEI-101 (p.o. or i.p.) at 3 or 10 mg·kg(-1) dose-dependently prevented kidney dysfunction and/or morphological damage induced by cisplatin in mice. These protective effects were associated with improved renal histopathology, attenuated oxidative stress and inflammation in the kidney. These effects were absent in CB2 receptor knockout mice. These results indicate that LEI-101 is a selective, largely peripherally restricted, orally available CB2 receptor agonist with therapeutic potential in diseases that are associated with inflammation and/or oxidative stress, including kidney disease.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have