Abstract

PMMA (poly(methyl methacrylate)) nanocomposites differing in their nature, size, and surface area were prepared containing one volume percent of silica, alumina or titania. These samples and pure PMMA were prepared in order to analyze how the presence of nanooxides affects the thermal stability and degradation kinetics of the materials. A detailed study of thermal degradation and thermal changes was performed by Simultaneous Thermogravimetry and Differential Scanning Calorimetry (SDT). The proposed mathematical model, including all three heating rates in one minimizing function, well fitted all TGA data obtained with a very high coefficient of correlation. This enabled an assessment of four decomposition steps of the PMMA samples and a calculation of their activation energies and individual contributions to total mass loss. The addition of the largest nanoparticles (titania) caused the highest activation energy for each DTG stage of the PMMA/nanooxide systems. The enhancement of head-to-head H–H bonding strength was achieved by addition of alumina and titania. The influence of the size and nature of nanoparticles on the glass transition temperature of prepared PMMA systems was also determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.