Abstract

AbstractSkill in seasonal forecasts in the Northern Hemisphere extratropics is mostly limited to winter. Drivers of summer circulation anomalies over the North Atlantic–European (NAE) sector are poorly understood. Here, we investigate the role of North Atlantic sea surface temperatures (SSTs) in driving summer atmospheric circulation changes. The summer North Atlantic Oscillation (SNAO), the leading mode of observed summer atmospheric circulation variability in the NAE sector, is correlated with a distinct SST tripole pattern in the North Atlantic. An atmospheric general circulation model is used to test whether there are robust atmospheric circulation responses over the NAE sector to concurrent SSTs related to the SNAO. The most robust responses project onto the summer east Atlantic (SEA) pattern, the second dominant mode of observed summer atmospheric circulation variability in the NAE sector, and are most evident at the surface in response to tropical SSTs and at altitude in response to extratropical SSTs. The tropical-to-extratropical teleconnection appears to be due to Rossby wave propagation from SST anomalies, and in turn precipitation anomalies, in the Caribbean region. We identify key biases in the model, which may be responsible for the overly dominant SEA pattern variability, compared to the SNAO, and may also explain why the responses resemble the SEA pattern, rather than the SNAO. Efforts to eradicate these biases, perhaps achieved by higher-resolution simulations or with improved model physics, would allow for an improved understanding of the true response to North Atlantic SST patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call