Abstract
We study topological properties of one-dimensional nonlinear bichromatic superlattices and unveil the effect of nonlinearity on topological states. We find the existence of nontrivial edge solitions, which distribute on the boundaries of the lattice with their chemical potential located in the linear gap regime and are sensitive to the phase parameter of the superlattice potential. We further demonstrate that the topological property of the nonlinear Bloch bands can be characterized by topological Chern numbers defined in the extended two-dimensional parameter space. In addition, we discuss that the composition relations between the nolinear Bloch waves and gap solitions for the nonlinear superlattices. The stabilities of edge solitons are also studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.